Indian Statistical Institute, Bangalore B. Math II, First Semester, 2022-23 Final Examination, Introduction to Statistical Inference 21.11.22 Maximum Score 100 Duration: 3 Hours

- 1. (5+5+5+5+5) We have data $(X_1, \dots, X_n, Y_1, \dots, Y_m)$ where all the random variables are independent, X_i follows Bernoulli(p) and Y_j follows Geometric(p). Let $I_X(p)$ be the information on p based on X_1 and $I_Y(p)$ be the information based on Y_1 .
 - (a) Show that $T = (\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j)$ is sufficient for p.
 - (b) Show that the distribution of T belongs to a curved exponential family.
 - (c) Find the MLE of p.
 - (d) Find I(p), the information on p based on the available data.
 - (e) Find $I_X(p)$ and $I_Y(p)$. Express I(p) as a linear combination of $I_X(p)$ and $I_Y(p)$.
- 2. (5+5+10) Consider the following regression model.

$$y_i = bx_i + e_i, \quad 1 \le i \le n,$$

where x_i 's are fixed non-zero real numbers and e_i 's are independent random variables with mean zero and equal variance.

- (a) Find the least squares estimator of b, that is, the value of b that minimizes $\sum_{i=1}^{n} (y_i bx_i)^2$.
- (b) Consider a general linear estimator of the form $\sum_{i=1}^{n} a_i y_i$. Find the mean and variance of this estimator.
- (c) Show that among all unbiased linear estimators, the least squares estimator has the lowest variance.
- 3. (10+10) Let X_1, \dots, X_n be iid $\mathcal{N}(\mu_1, \sigma^2)$ random variables and Y_1, \dots, Y_m be and independent set of iid $\mathcal{N}(\mu_2, \sigma^2)$ random variables.
 - (a) Derive the generalized likelihood ratio test for testing $\mu_1 = \mu_2$ vs $\mu_1 \neq \mu_2$.
 - (b) Show that this is equivalent to the two sample *t*-test.
- 4. (10) Consider a machine with three components. The failure times of the components are iid exponential(λ). The machine will continue to work as long as at least two of the components work. Find the expected time of failure of the machine.
- 5. (10+5+5+5) Let X_1, \dots, X_n be iid Poisson(λ) random variables. We assume a Gamma(α, β) prior on λ .
 - (a) Derive the posterior distribution of λ and find the posterior mean $\hat{\lambda}$.
 - (b) Show that $\hat{\lambda}$ is a consistent estimator for λ .
 - (c) Show that $\sqrt{n}(\hat{\lambda} \lambda)$ converges in distribution to $\mathcal{N}(0, \lambda)$.
 - (d) Find an asymptotic (1α) level confidence interval for λ using (c).