Indian Statistical Institute, Bangalore
 B. Math II, First Semester, 2022-23
 21.11.22 Final Examination, Introduction to Statistical Inference Maximum Score 100
 Duration: 3 Hours

1. $(5+5+5+5+5)$ We have data $\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right)$ where all the random variables are independent, X_{i} follows $\operatorname{Bernoulli}(p)$ and Y_{j} follows $\operatorname{Geometric}(p)$. Let $I_{X}(p)$ be the information on p based on X_{1} and $I_{Y}(p)$ be the information based on Y_{1}.
(a) Show that $T=\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)$ is sufficient for p.
(b) Show that the distribution of T belongs to a curved exponential family.
(c) Find the MLE of p.
(d) Find $I(p)$, the information on p based on the available data.
(e) Find $I_{X}(p)$ and $I_{Y}(p)$. Express $I(p)$ as a linear combination of $I_{X}(p)$ and $I_{Y}(p)$.
2. $(5+5+10)$ Consider the following regression model.

$$
y_{i}=b x_{i}+e_{i}, \quad 1 \leq i \leq n,
$$

where x_{i} 's are fixed non-zero real numbers and e_{i} 's are independent random variables with mean zero and equal variance.
(a) Find the least squares estimator of b, that is, the value of b that minimizes $\sum_{i=1}^{n}\left(y_{i}-b x_{i}\right)^{2}$.
(b) Consider a general linear estimator of the form $\sum_{i=1}^{n} a_{i} y_{i}$. Find the mean and variance of this estimator.
(c) Show that among all unbiased linear estimators, the least squares estimator has the lowest variance.
3. ($10+10$) Let X_{1}, \cdots, X_{n} be iid $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$ random variables and Y_{1}, \cdots, Y_{m} be and independent set of iid $\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ random variables.
(a) Derive the generalized likelihood ratio test for testing $\mu_{1}=\mu_{2}$ vs $\mu_{1} \neq \mu_{2}$.
(b) Show that this is equivalent to the two sample t-test.
4. (10) Consider a machine with three components. The failure times of the components are iid exponential (λ). The machine will continue to work as long as at least two of the components work. Find the expected time of failure of the machine.
5. ($10+5+5+5$) Let X_{1}, \cdots, X_{n} be iid Poisson (λ) random variables. We assume a $\operatorname{Gamma}(\alpha, \beta)$ prior on λ.
(a) Derive the posterior distribution of λ and find the posterior mean $\hat{\lambda}$.
(b) Show that $\hat{\lambda}$ is a consistent estimator for λ.
(c) Show that $\sqrt{n}(\hat{\lambda}-\lambda)$ converges in distribution to $\mathcal{N}(0, \lambda)$.
(d) Find an asymptotic $(1-\alpha)$ level confidence interval for λ using (c).

